Operating Mode

Operating Mode

“Biotechnologies and enzyme technologies!”

Xbee is a natural additive for organic fuels developed many years ago combining biotechnologies and enzyme technologies.



An enzyme is a protein naturally produced by all living cells. It comes in the form of a polypeptide chain with a fold in a specific place. This gives the enzyme its catalytic power – accelerating chemical reactions that are slow or not encouraged by decreasing the reaction activation energy, thereby increasing the reaction speed without affecting thermodynamics.


Many enzymes also need a non-protein element, called a coenzyme, for their catalytic activity. These are generally metallic ions or small organic molecules essential to the enzymatic reaction mechanism.
In an oil-based fuel, the metallic ions may be provided in sufficient quantity by the fuel itself.

Protein Distinctiveness and Folding

A specific enzyme has its own three-dimensional structure as a result of the folding of its protein chain. This structure defines a more or less specific recognition site for the enzyme substrates (here the molecules that make up the transformed hydrocarbon) thus enabling contact between the substrate and the part of the enzyme responsible for catalytic activity (often including the coenzyme) to form an enzyme-substrate complex.
This complex enables the substrate’s chemical transformation followed by the liberation of reaction products and the enzyme. The latter may then enter into a new catalytic cycle and transform a new substrate molecule.

In the case of the Xbee natural fuel additive, composed of a cocktail of different enzymes, certain molecules that make up the fuel are recognized as substrates by certain enzymes and may therefore be modified. For example, these molecules may be polycyclic aromatic compounds or sulphurous compounds. During the combustion of a fuel modified by the Xbee fuel cleaner, the added enzymes are also burnt without any notable additional discharge since they are proteins (and therefore organic).


The enzymes contained in Xbee Enzyme Fuel Treatment are extremely stable and remain active for many years. However, there are physical factors that may destroy the enzymes, inhibit them, or lessen their activity when treating fuels. Enzymatic action may be interrupted by environment polarity, pH, or temperature changes and by UV light. Exposure to temperatures exceeding 80 to 90°C may destroy Xbee enzyme activity.

The effect of Xbee treatment on fuels

In standard combustion, a certain amount of energy is required for the successive lighting of each series of fuel droplets. This energy consumed during lighting is not used for thrust and may be transformed into residual radiant heat, contributing to the formation of nitrous oxides (NOx).
The action of Xbee fuel additive happens prior to combustion. The concerted action of various enzymes leads to a fuel with a higher combustion rate and better combustion. This retains more thermal energy for thrust. Moreover, faster flame propagation enables a larger portion of each fuel load to be burnt, avoiding premature detonation and engine knocking. While a lesser quantity of burnt fuel is rejected by exhaust valves, flame extinction in the exhaust duct is reduced, preventing the formation of soot. The Xbee fuel additive is a cocktail of lyases, transferases and isomerases that split certain fuel components, exchange chemical groups and rearrange fuel molecules.
This results in a hyper-oxygenated fuel which, during its combustion, favours the formation of carbon dioxide (CO2) at the expense of carbon monoxide (CO). Moreover, the overall decreased fuel consumption due to more efficient combustion reduces emission signatures, in particular those of particulates and carbon dioxide.
When storing fuel, the Xbee fuel cleaner helps to eliminate water, limiting sediments such as rust. The Xbee fuel additive also decreases contaminants in humid fuels. These result from the microbiological biomass (yeast, mould, fungi…) that develops at the junction between the water and the fuel. Since they are less numerous, there is less injector corrosion and contamination.
Xbee fuel additive cleansing action: step 1. Standard fuel is contaminated, does not burn correctly and builds up soot and carbon in engines.

Xbee fuel additive cleansing action: step 2. The addition of Xbee into the fuel automatically results in the elimination of all the biomass contamination in the fuel and fuel supply system. All this biomass is naturally burnt with the fuel.

Xbee fuel additive cleansing action: step 3. Xbee fuel additive then removes all carbon and soot deposits in the engines. Smokes already start to reduce.

Xbee fuel additive cleansing action: step 4. Finally, the regular use of the Xbee enzyle fuel treatment maintains the tanks, fuel supply system and engines in a perfect state of cleanliness. Smokes are lighter, particles are eliminated.

During fuel production, the purpose of the hydro-treatment stage is to reduce the quantity of sulphur which, after combustion, causes sulphur oxides (SOx). It has been suggested that large quantities of sulphur oxides in exhaust from incomplete combustion may be the source of cancer-causing compounds found in diesel engine soot.
This treatment has a limited effect on polycyclic aromatic molecules which affect diesel fuel quality. After treatment with the Xbee fuel additive, diesel fuel’s composition is modified with regards to sulphurous compounds. In particular, highly stable sulphites and sulphates appear, sometimes in the form of organic sulphates that may be found in emission particulates. The quantity of sulphur emitted remains the same; however the SO2 content is much more likely to be decreased. The decreased quantity of extremely toxic and cancer-causing aromatics, and tacky, invasive soot, has the visible effect of making emissions less dangerous. Replacing the highly reactive SO2 with a more stable compound attenuates the environmental impact. Moreover, with the decreased consumption due to the enzymes’ effect on the fuel, the time-weighted impact the sulphur may have on the environment is reduced in the same proportions. Lastly, other factors related to sulphur combustion may not always be known.